| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
1 2 3
|
om2noseqlt |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B -> ( G ` A ) |
| 5 |
1 2 3
|
om2noseqlt |
|- ( ( ph /\ ( B e. _om /\ A e. _om ) ) -> ( B e. A -> ( G ` B ) |
| 6 |
5
|
ancom2s |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( B e. A -> ( G ` B ) |
| 7 |
|
fveq2 |
|- ( B = A -> ( G ` B ) = ( G ` A ) ) |
| 8 |
7
|
a1i |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( B = A -> ( G ` B ) = ( G ` A ) ) ) |
| 9 |
6 8
|
orim12d |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( ( B e. A \/ B = A ) -> ( ( G ` B ) |
| 10 |
|
nnon |
|- ( B e. _om -> B e. On ) |
| 11 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 12 |
|
onsseleq |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> ( B e. A \/ B = A ) ) ) |
| 13 |
|
ontri1 |
|- ( ( B e. On /\ A e. On ) -> ( B C_ A <-> -. A e. B ) ) |
| 14 |
12 13
|
bitr3d |
|- ( ( B e. On /\ A e. On ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) ) |
| 15 |
10 11 14
|
syl2anr |
|- ( ( A e. _om /\ B e. _om ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( ( B e. A \/ B = A ) <-> -. A e. B ) ) |
| 17 |
1 2 3
|
om2noseqfo |
|- ( ph -> G : _om -onto-> Z ) |
| 18 |
|
fof |
|- ( G : _om -onto-> Z -> G : _om --> Z ) |
| 19 |
17 18
|
syl |
|- ( ph -> G : _om --> Z ) |
| 20 |
3 1
|
noseqssno |
|- ( ph -> Z C_ No ) |
| 21 |
19 20
|
fssd |
|- ( ph -> G : _om --> No ) |
| 22 |
21
|
ffvelcdmda |
|- ( ( ph /\ B e. _om ) -> ( G ` B ) e. No ) |
| 23 |
22
|
adantrl |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( G ` B ) e. No ) |
| 24 |
21
|
ffvelcdmda |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) e. No ) |
| 25 |
24
|
adantrr |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( G ` A ) e. No ) |
| 26 |
|
sleloe |
|- ( ( ( G ` B ) e. No /\ ( G ` A ) e. No ) -> ( ( G ` B ) <_s ( G ` A ) <-> ( ( G ` B ) |
| 27 |
|
slenlt |
|- ( ( ( G ` B ) e. No /\ ( G ` A ) e. No ) -> ( ( G ` B ) <_s ( G ` A ) <-> -. ( G ` A ) |
| 28 |
26 27
|
bitr3d |
|- ( ( ( G ` B ) e. No /\ ( G ` A ) e. No ) -> ( ( ( G ` B ) -. ( G ` A ) |
| 29 |
23 25 28
|
syl2anc |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( ( ( G ` B ) -. ( G ` A ) |
| 30 |
9 16 29
|
3imtr3d |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( -. A e. B -> -. ( G ` A ) |
| 31 |
4 30
|
impcon4bid |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B <-> ( G ` A ) |