| Step | Hyp | Ref | Expression | 
						
							| 1 |  | om2noseq.1 |  |-  ( ph -> C e. No ) | 
						
							| 2 |  | om2noseq.2 |  |-  ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 3 |  | om2noseq.3 |  |-  ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) | 
						
							| 4 |  | nnaordex2 |  |-  ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) | 
						
							| 6 |  | suceq |  |-  ( y = (/) -> suc y = suc (/) ) | 
						
							| 7 |  | df-1o |  |-  1o = suc (/) | 
						
							| 8 | 6 7 | eqtr4di |  |-  ( y = (/) -> suc y = 1o ) | 
						
							| 9 | 8 | oveq2d |  |-  ( y = (/) -> ( A +o suc y ) = ( A +o 1o ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( y = (/) -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o 1o ) ) ) | 
						
							| 11 | 10 | breq2d |  |-  ( y = (/) -> ( ( G ` A )  ( G ` A )  | 
						
							| 12 |  | suceq |  |-  ( y = z -> suc y = suc z ) | 
						
							| 13 | 12 | oveq2d |  |-  ( y = z -> ( A +o suc y ) = ( A +o suc z ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( y = z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc z ) ) ) | 
						
							| 15 | 14 | breq2d |  |-  ( y = z -> ( ( G ` A )  ( G ` A )  | 
						
							| 16 |  | suceq |  |-  ( y = suc z -> suc y = suc suc z ) | 
						
							| 17 | 16 | oveq2d |  |-  ( y = suc z -> ( A +o suc y ) = ( A +o suc suc z ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( y = suc z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc suc z ) ) ) | 
						
							| 19 | 18 | breq2d |  |-  ( y = suc z -> ( ( G ` A )  ( G ` A )  | 
						
							| 20 | 1 2 3 | om2noseqfo |  |-  ( ph -> G : _om -onto-> Z ) | 
						
							| 21 |  | fof |  |-  ( G : _om -onto-> Z -> G : _om --> Z ) | 
						
							| 22 | 20 21 | syl |  |-  ( ph -> G : _om --> Z ) | 
						
							| 23 | 3 1 | noseqssno |  |-  ( ph -> Z C_ No ) | 
						
							| 24 | 22 23 | fssd |  |-  ( ph -> G : _om --> No ) | 
						
							| 25 | 24 | ffvelcdmda |  |-  ( ( ph /\ A e. _om ) -> ( G ` A ) e. No ) | 
						
							| 26 | 25 | addsridd |  |-  ( ( ph /\ A e. _om ) -> ( ( G ` A ) +s 0s ) = ( G ` A ) ) | 
						
							| 27 |  | 0slt1s |  |-  0s  | 
						
							| 28 |  | 0sno |  |-  0s e. No | 
						
							| 29 | 28 | a1i |  |-  ( ( ph /\ A e. _om ) -> 0s e. No ) | 
						
							| 30 |  | 1sno |  |-  1s e. No | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ A e. _om ) -> 1s e. No ) | 
						
							| 32 | 29 31 25 | sltadd2d |  |-  ( ( ph /\ A e. _om ) -> ( 0s  ( ( G ` A ) +s 0s )  | 
						
							| 33 | 27 32 | mpbii |  |-  ( ( ph /\ A e. _om ) -> ( ( G ` A ) +s 0s )  | 
						
							| 34 | 26 33 | eqbrtrrd |  |-  ( ( ph /\ A e. _om ) -> ( G ` A )  | 
						
							| 35 |  | nnon |  |-  ( A e. _om -> A e. On ) | 
						
							| 36 |  | oa1suc |  |-  ( A e. On -> ( A +o 1o ) = suc A ) | 
						
							| 37 | 35 36 | syl |  |-  ( A e. _om -> ( A +o 1o ) = suc A ) | 
						
							| 38 | 37 | fveq2d |  |-  ( A e. _om -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) | 
						
							| 39 | 38 | adantl |  |-  ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) | 
						
							| 40 | 1 | adantr |  |-  ( ( ph /\ A e. _om ) -> C e. No ) | 
						
							| 41 | 2 | adantr |  |-  ( ( ph /\ A e. _om ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ A e. _om ) -> A e. _om ) | 
						
							| 43 | 40 41 42 | om2noseqsuc |  |-  ( ( ph /\ A e. _om ) -> ( G ` suc A ) = ( ( G ` A ) +s 1s ) ) | 
						
							| 44 | 39 43 | eqtrd |  |-  ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( ( G ` A ) +s 1s ) ) | 
						
							| 45 | 34 44 | breqtrrd |  |-  ( ( ph /\ A e. _om ) -> ( G ` A )  | 
						
							| 46 | 25 | adantr |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` A ) e. No ) | 
						
							| 47 | 24 | ad2antrr |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  G : _om --> No ) | 
						
							| 48 |  | peano2 |  |-  ( z e. _om -> suc z e. _om ) | 
						
							| 49 | 48 | adantr |  |-  ( ( z e. _om /\ ( G ` A )  suc z e. _om ) | 
						
							| 50 |  | nnacl |  |-  ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc z ) e. _om ) | 
						
							| 51 | 42 49 50 | syl2an |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( A +o suc z ) e. _om ) | 
						
							| 52 | 47 51 | ffvelcdmd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc z ) ) e. No ) | 
						
							| 53 |  | peano2 |  |-  ( suc z e. _om -> suc suc z e. _om ) | 
						
							| 54 | 48 53 | syl |  |-  ( z e. _om -> suc suc z e. _om ) | 
						
							| 55 | 54 | adantr |  |-  ( ( z e. _om /\ ( G ` A )  suc suc z e. _om ) | 
						
							| 56 |  | nnacl |  |-  ( ( A e. _om /\ suc suc z e. _om ) -> ( A +o suc suc z ) e. _om ) | 
						
							| 57 | 42 55 56 | syl2an |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( A +o suc suc z ) e. _om ) | 
						
							| 58 | 47 57 | ffvelcdmd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc suc z ) ) e. No ) | 
						
							| 59 |  | simprr |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` A )  | 
						
							| 60 | 52 | addsridd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( ( G ` ( A +o suc z ) ) +s 0s ) = ( G ` ( A +o suc z ) ) ) | 
						
							| 61 | 28 | a1i |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  0s e. No ) | 
						
							| 62 | 30 | a1i |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  1s e. No ) | 
						
							| 63 | 61 62 52 | sltadd2d |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( 0s  ( ( G ` ( A +o suc z ) ) +s 0s )  | 
						
							| 64 | 27 63 | mpbii |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( ( G ` ( A +o suc z ) ) +s 0s )  | 
						
							| 65 | 60 64 | eqbrtrrd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc z ) )  | 
						
							| 66 |  | nnasuc |  |-  ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc suc z ) = suc ( A +o suc z ) ) | 
						
							| 67 | 66 | fveq2d |  |-  ( ( A e. _om /\ suc z e. _om ) -> ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) | 
						
							| 68 | 42 49 67 | syl2an |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) | 
						
							| 69 | 1 | ad2antrr |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  C e. No ) | 
						
							| 70 | 2 | ad2antrr |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) | 
						
							| 71 | 69 70 51 | om2noseqsuc |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` suc ( A +o suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) | 
						
							| 72 | 68 71 | eqtrd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) | 
						
							| 73 | 65 72 | breqtrrd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` ( A +o suc z ) )  | 
						
							| 74 | 46 52 58 59 73 | slttrd |  |-  ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A )  ( G ` A )  | 
						
							| 75 | 74 | expr |  |-  ( ( ( ph /\ A e. _om ) /\ z e. _om ) -> ( ( G ` A )  ( G ` A )  | 
						
							| 76 | 75 | expcom |  |-  ( z e. _om -> ( ( ph /\ A e. _om ) -> ( ( G ` A )  ( G ` A )  | 
						
							| 77 | 11 15 19 45 76 | finds2 |  |-  ( y e. _om -> ( ( ph /\ A e. _om ) -> ( G ` A )  | 
						
							| 78 | 77 | impcom |  |-  ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( G ` A )  | 
						
							| 79 |  | fveq2 |  |-  ( ( A +o suc y ) = B -> ( G ` ( A +o suc y ) ) = ( G ` B ) ) | 
						
							| 80 | 79 | breq2d |  |-  ( ( A +o suc y ) = B -> ( ( G ` A )  ( G ` A )  | 
						
							| 81 | 78 80 | syl5ibcom |  |-  ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( ( A +o suc y ) = B -> ( G ` A )  | 
						
							| 82 | 81 | rexlimdva |  |-  ( ( ph /\ A e. _om ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A )  | 
						
							| 83 | 82 | adantrr |  |-  ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A )  | 
						
							| 84 | 5 83 | sylbid |  |-  ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B -> ( G ` A )  |