Step |
Hyp |
Ref |
Expression |
1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
4 |
|
nnaordex2 |
|- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) |
5 |
4
|
adantl |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) |
6 |
|
suceq |
|- ( y = (/) -> suc y = suc (/) ) |
7 |
|
df-1o |
|- 1o = suc (/) |
8 |
6 7
|
eqtr4di |
|- ( y = (/) -> suc y = 1o ) |
9 |
8
|
oveq2d |
|- ( y = (/) -> ( A +o suc y ) = ( A +o 1o ) ) |
10 |
9
|
fveq2d |
|- ( y = (/) -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o 1o ) ) ) |
11 |
10
|
breq2d |
|- ( y = (/) -> ( ( G ` A ) ( G ` A ) |
12 |
|
suceq |
|- ( y = z -> suc y = suc z ) |
13 |
12
|
oveq2d |
|- ( y = z -> ( A +o suc y ) = ( A +o suc z ) ) |
14 |
13
|
fveq2d |
|- ( y = z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc z ) ) ) |
15 |
14
|
breq2d |
|- ( y = z -> ( ( G ` A ) ( G ` A ) |
16 |
|
suceq |
|- ( y = suc z -> suc y = suc suc z ) |
17 |
16
|
oveq2d |
|- ( y = suc z -> ( A +o suc y ) = ( A +o suc suc z ) ) |
18 |
17
|
fveq2d |
|- ( y = suc z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc suc z ) ) ) |
19 |
18
|
breq2d |
|- ( y = suc z -> ( ( G ` A ) ( G ` A ) |
20 |
1 2 3
|
om2noseqfo |
|- ( ph -> G : _om -onto-> Z ) |
21 |
|
fof |
|- ( G : _om -onto-> Z -> G : _om --> Z ) |
22 |
20 21
|
syl |
|- ( ph -> G : _om --> Z ) |
23 |
3 1
|
noseqssno |
|- ( ph -> Z C_ No ) |
24 |
22 23
|
fssd |
|- ( ph -> G : _om --> No ) |
25 |
24
|
ffvelcdmda |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) e. No ) |
26 |
25
|
addsridd |
|- ( ( ph /\ A e. _om ) -> ( ( G ` A ) +s 0s ) = ( G ` A ) ) |
27 |
|
0slt1s |
|- 0s |
28 |
|
0sno |
|- 0s e. No |
29 |
28
|
a1i |
|- ( ( ph /\ A e. _om ) -> 0s e. No ) |
30 |
|
1sno |
|- 1s e. No |
31 |
30
|
a1i |
|- ( ( ph /\ A e. _om ) -> 1s e. No ) |
32 |
29 31 25
|
sltadd2d |
|- ( ( ph /\ A e. _om ) -> ( 0s ( ( G ` A ) +s 0s ) |
33 |
27 32
|
mpbii |
|- ( ( ph /\ A e. _om ) -> ( ( G ` A ) +s 0s ) |
34 |
26 33
|
eqbrtrrd |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) |
35 |
|
nnon |
|- ( A e. _om -> A e. On ) |
36 |
|
oa1suc |
|- ( A e. On -> ( A +o 1o ) = suc A ) |
37 |
35 36
|
syl |
|- ( A e. _om -> ( A +o 1o ) = suc A ) |
38 |
37
|
fveq2d |
|- ( A e. _om -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) |
39 |
38
|
adantl |
|- ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) |
40 |
1
|
adantr |
|- ( ( ph /\ A e. _om ) -> C e. No ) |
41 |
2
|
adantr |
|- ( ( ph /\ A e. _om ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
42 |
|
simpr |
|- ( ( ph /\ A e. _om ) -> A e. _om ) |
43 |
40 41 42
|
om2noseqsuc |
|- ( ( ph /\ A e. _om ) -> ( G ` suc A ) = ( ( G ` A ) +s 1s ) ) |
44 |
39 43
|
eqtrd |
|- ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( ( G ` A ) +s 1s ) ) |
45 |
34 44
|
breqtrrd |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) |
46 |
25
|
adantr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) e. No ) |
47 |
24
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) G : _om --> No ) |
48 |
|
peano2 |
|- ( z e. _om -> suc z e. _om ) |
49 |
48
|
adantr |
|- ( ( z e. _om /\ ( G ` A ) suc z e. _om ) |
50 |
|
nnacl |
|- ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc z ) e. _om ) |
51 |
42 49 50
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( A +o suc z ) e. _om ) |
52 |
47 51
|
ffvelcdmd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) e. No ) |
53 |
|
peano2 |
|- ( suc z e. _om -> suc suc z e. _om ) |
54 |
48 53
|
syl |
|- ( z e. _om -> suc suc z e. _om ) |
55 |
54
|
adantr |
|- ( ( z e. _om /\ ( G ` A ) suc suc z e. _om ) |
56 |
|
nnacl |
|- ( ( A e. _om /\ suc suc z e. _om ) -> ( A +o suc suc z ) e. _om ) |
57 |
42 55 56
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( A +o suc suc z ) e. _om ) |
58 |
47 57
|
ffvelcdmd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) e. No ) |
59 |
|
simprr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) |
60 |
52
|
addsridd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( ( G ` ( A +o suc z ) ) +s 0s ) = ( G ` ( A +o suc z ) ) ) |
61 |
28
|
a1i |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) 0s e. No ) |
62 |
30
|
a1i |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) 1s e. No ) |
63 |
61 62 52
|
sltadd2d |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( 0s ( ( G ` ( A +o suc z ) ) +s 0s ) |
64 |
27 63
|
mpbii |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( ( G ` ( A +o suc z ) ) +s 0s ) |
65 |
60 64
|
eqbrtrrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) |
66 |
|
nnasuc |
|- ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc suc z ) = suc ( A +o suc z ) ) |
67 |
66
|
fveq2d |
|- ( ( A e. _om /\ suc z e. _om ) -> ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) |
68 |
42 49 67
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) |
69 |
1
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) C e. No ) |
70 |
2
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
71 |
69 70 51
|
om2noseqsuc |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` suc ( A +o suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) |
72 |
68 71
|
eqtrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) |
73 |
65 72
|
breqtrrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) |
74 |
46 52 58 59 73
|
slttrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) |
75 |
74
|
expr |
|- ( ( ( ph /\ A e. _om ) /\ z e. _om ) -> ( ( G ` A ) ( G ` A ) |
76 |
75
|
expcom |
|- ( z e. _om -> ( ( ph /\ A e. _om ) -> ( ( G ` A ) ( G ` A ) |
77 |
11 15 19 45 76
|
finds2 |
|- ( y e. _om -> ( ( ph /\ A e. _om ) -> ( G ` A ) |
78 |
77
|
impcom |
|- ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( G ` A ) |
79 |
|
fveq2 |
|- ( ( A +o suc y ) = B -> ( G ` ( A +o suc y ) ) = ( G ` B ) ) |
80 |
79
|
breq2d |
|- ( ( A +o suc y ) = B -> ( ( G ` A ) ( G ` A ) |
81 |
78 80
|
syl5ibcom |
|- ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( ( A +o suc y ) = B -> ( G ` A ) |
82 |
81
|
rexlimdva |
|- ( ( ph /\ A e. _om ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A ) |
83 |
82
|
adantrr |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A ) |
84 |
5 83
|
sylbid |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B -> ( G ` A ) |