| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2noseq.1 |
|- ( ph -> C e. No ) |
| 2 |
|
om2noseq.2 |
|- ( ph -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 3 |
|
om2noseq.3 |
|- ( ph -> Z = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) " _om ) ) |
| 4 |
|
nnaordex2 |
|- ( ( A e. _om /\ B e. _om ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) |
| 5 |
4
|
adantl |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B <-> E. y e. _om ( A +o suc y ) = B ) ) |
| 6 |
|
suceq |
|- ( y = (/) -> suc y = suc (/) ) |
| 7 |
|
df-1o |
|- 1o = suc (/) |
| 8 |
6 7
|
eqtr4di |
|- ( y = (/) -> suc y = 1o ) |
| 9 |
8
|
oveq2d |
|- ( y = (/) -> ( A +o suc y ) = ( A +o 1o ) ) |
| 10 |
9
|
fveq2d |
|- ( y = (/) -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o 1o ) ) ) |
| 11 |
10
|
breq2d |
|- ( y = (/) -> ( ( G ` A ) ( G ` A ) |
| 12 |
|
suceq |
|- ( y = z -> suc y = suc z ) |
| 13 |
12
|
oveq2d |
|- ( y = z -> ( A +o suc y ) = ( A +o suc z ) ) |
| 14 |
13
|
fveq2d |
|- ( y = z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc z ) ) ) |
| 15 |
14
|
breq2d |
|- ( y = z -> ( ( G ` A ) ( G ` A ) |
| 16 |
|
suceq |
|- ( y = suc z -> suc y = suc suc z ) |
| 17 |
16
|
oveq2d |
|- ( y = suc z -> ( A +o suc y ) = ( A +o suc suc z ) ) |
| 18 |
17
|
fveq2d |
|- ( y = suc z -> ( G ` ( A +o suc y ) ) = ( G ` ( A +o suc suc z ) ) ) |
| 19 |
18
|
breq2d |
|- ( y = suc z -> ( ( G ` A ) ( G ` A ) |
| 20 |
1 2 3
|
om2noseqfo |
|- ( ph -> G : _om -onto-> Z ) |
| 21 |
|
fof |
|- ( G : _om -onto-> Z -> G : _om --> Z ) |
| 22 |
20 21
|
syl |
|- ( ph -> G : _om --> Z ) |
| 23 |
3 1
|
noseqssno |
|- ( ph -> Z C_ No ) |
| 24 |
22 23
|
fssd |
|- ( ph -> G : _om --> No ) |
| 25 |
24
|
ffvelcdmda |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) e. No ) |
| 26 |
25
|
sltp1d |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) |
| 27 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 28 |
|
oa1suc |
|- ( A e. On -> ( A +o 1o ) = suc A ) |
| 29 |
27 28
|
syl |
|- ( A e. _om -> ( A +o 1o ) = suc A ) |
| 30 |
29
|
fveq2d |
|- ( A e. _om -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) |
| 31 |
30
|
adantl |
|- ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( G ` suc A ) ) |
| 32 |
1
|
adantr |
|- ( ( ph /\ A e. _om ) -> C e. No ) |
| 33 |
2
|
adantr |
|- ( ( ph /\ A e. _om ) -> G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 34 |
|
simpr |
|- ( ( ph /\ A e. _om ) -> A e. _om ) |
| 35 |
32 33 34
|
om2noseqsuc |
|- ( ( ph /\ A e. _om ) -> ( G ` suc A ) = ( ( G ` A ) +s 1s ) ) |
| 36 |
31 35
|
eqtrd |
|- ( ( ph /\ A e. _om ) -> ( G ` ( A +o 1o ) ) = ( ( G ` A ) +s 1s ) ) |
| 37 |
26 36
|
breqtrrd |
|- ( ( ph /\ A e. _om ) -> ( G ` A ) |
| 38 |
25
|
adantr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) e. No ) |
| 39 |
24
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) G : _om --> No ) |
| 40 |
|
peano2 |
|- ( z e. _om -> suc z e. _om ) |
| 41 |
40
|
adantr |
|- ( ( z e. _om /\ ( G ` A ) suc z e. _om ) |
| 42 |
|
nnacl |
|- ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc z ) e. _om ) |
| 43 |
34 41 42
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( A +o suc z ) e. _om ) |
| 44 |
39 43
|
ffvelcdmd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) e. No ) |
| 45 |
|
peano2 |
|- ( suc z e. _om -> suc suc z e. _om ) |
| 46 |
40 45
|
syl |
|- ( z e. _om -> suc suc z e. _om ) |
| 47 |
46
|
adantr |
|- ( ( z e. _om /\ ( G ` A ) suc suc z e. _om ) |
| 48 |
|
nnacl |
|- ( ( A e. _om /\ suc suc z e. _om ) -> ( A +o suc suc z ) e. _om ) |
| 49 |
34 47 48
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( A +o suc suc z ) e. _om ) |
| 50 |
39 49
|
ffvelcdmd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) e. No ) |
| 51 |
|
simprr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) |
| 52 |
44
|
sltp1d |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) |
| 53 |
|
nnasuc |
|- ( ( A e. _om /\ suc z e. _om ) -> ( A +o suc suc z ) = suc ( A +o suc z ) ) |
| 54 |
53
|
fveq2d |
|- ( ( A e. _om /\ suc z e. _om ) -> ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) |
| 55 |
34 41 54
|
syl2an |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) = ( G ` suc ( A +o suc z ) ) ) |
| 56 |
1
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) C e. No ) |
| 57 |
2
|
ad2antrr |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) G = ( rec ( ( x e. _V |-> ( x +s 1s ) ) , C ) |` _om ) ) |
| 58 |
56 57 43
|
om2noseqsuc |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` suc ( A +o suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) |
| 59 |
55 58
|
eqtrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc suc z ) ) = ( ( G ` ( A +o suc z ) ) +s 1s ) ) |
| 60 |
52 59
|
breqtrrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` ( A +o suc z ) ) |
| 61 |
38 44 50 51 60
|
slttrd |
|- ( ( ( ph /\ A e. _om ) /\ ( z e. _om /\ ( G ` A ) ( G ` A ) |
| 62 |
61
|
expr |
|- ( ( ( ph /\ A e. _om ) /\ z e. _om ) -> ( ( G ` A ) ( G ` A ) |
| 63 |
62
|
expcom |
|- ( z e. _om -> ( ( ph /\ A e. _om ) -> ( ( G ` A ) ( G ` A ) |
| 64 |
11 15 19 37 63
|
finds2 |
|- ( y e. _om -> ( ( ph /\ A e. _om ) -> ( G ` A ) |
| 65 |
64
|
impcom |
|- ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( G ` A ) |
| 66 |
|
fveq2 |
|- ( ( A +o suc y ) = B -> ( G ` ( A +o suc y ) ) = ( G ` B ) ) |
| 67 |
66
|
breq2d |
|- ( ( A +o suc y ) = B -> ( ( G ` A ) ( G ` A ) |
| 68 |
65 67
|
syl5ibcom |
|- ( ( ( ph /\ A e. _om ) /\ y e. _om ) -> ( ( A +o suc y ) = B -> ( G ` A ) |
| 69 |
68
|
rexlimdva |
|- ( ( ph /\ A e. _om ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A ) |
| 70 |
69
|
adantrr |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( E. y e. _om ( A +o suc y ) = B -> ( G ` A ) |
| 71 |
5 70
|
sylbid |
|- ( ( ph /\ ( A e. _om /\ B e. _om ) ) -> ( A e. B -> ( G ` A ) |