| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnaordex | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) ) | 
						
							| 2 |  | nn0suc | ⊢ ( 𝑦  ∈  ω  →  ( 𝑦  =  ∅  ∨  ∃ 𝑥  ∈  ω 𝑦  =  suc  𝑥 ) ) | 
						
							| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ( 𝑦  =  ∅  ∨  ∃ 𝑥  ∈  ω 𝑦  =  suc  𝑥 ) ) | 
						
							| 4 |  | simprrl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ∅  ∈  𝑦 ) | 
						
							| 5 |  | n0i | ⊢ ( ∅  ∈  𝑦  →  ¬  𝑦  =  ∅ ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ¬  𝑦  =  ∅ ) | 
						
							| 7 | 3 6 | orcnd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ∃ 𝑥  ∈  ω 𝑦  =  suc  𝑥 ) | 
						
							| 8 |  | simprrr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ( 𝐴  +o  𝑦 )  =  𝐵 ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑦  =  suc  𝑥  →  ( 𝐴  +o  𝑦 )  =  ( 𝐴  +o  suc  𝑥 ) ) | 
						
							| 10 | 9 | eqeq1d | ⊢ ( 𝑦  =  suc  𝑥  →  ( ( 𝐴  +o  𝑦 )  =  𝐵  ↔  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) | 
						
							| 11 | 8 10 | syl5ibcom | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ( 𝑦  =  suc  𝑥  →  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) | 
						
							| 12 | 11 | reximdv | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ( ∃ 𝑥  ∈  ω 𝑦  =  suc  𝑥  →  ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) | 
						
							| 13 | 7 12 | mpd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑦  ∈  ω  ∧  ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) )  →  ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) | 
						
							| 14 | 13 | rexlimdvaa | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  →  ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) | 
						
							| 15 |  | peano2 | ⊢ ( 𝑥  ∈  ω  →  suc  𝑥  ∈  ω ) | 
						
							| 16 | 15 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑥  ∈  ω  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  suc  𝑥  ∈  ω ) | 
						
							| 17 |  | nnord | ⊢ ( 𝑥  ∈  ω  →  Ord  𝑥 ) | 
						
							| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑥  ∈  ω  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  Ord  𝑥 ) | 
						
							| 19 |  | 0elsuc | ⊢ ( Ord  𝑥  →  ∅  ∈  suc  𝑥 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑥  ∈  ω  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  ∅  ∈  suc  𝑥 ) | 
						
							| 21 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑥  ∈  ω  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) | 
						
							| 22 |  | eleq2 | ⊢ ( 𝑦  =  suc  𝑥  →  ( ∅  ∈  𝑦  ↔  ∅  ∈  suc  𝑥 ) ) | 
						
							| 23 | 22 10 | anbi12d | ⊢ ( 𝑦  =  suc  𝑥  →  ( ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  ↔  ( ∅  ∈  suc  𝑥  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) ) | 
						
							| 24 | 23 | rspcev | ⊢ ( ( suc  𝑥  ∈  ω  ∧  ( ∅  ∈  suc  𝑥  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) | 
						
							| 25 | 16 20 21 24 | syl12anc | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  ∧  ( 𝑥  ∈  ω  ∧  ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) )  →  ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) | 
						
							| 26 | 25 | rexlimdvaa | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵  →  ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 ) ) ) | 
						
							| 27 | 14 26 | impbid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑦  ∈  ω ( ∅  ∈  𝑦  ∧  ( 𝐴  +o  𝑦 )  =  𝐵 )  ↔  ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) | 
						
							| 28 | 1 27 | bitrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥  ∈  ω ( 𝐴  +o  suc  𝑥 )  =  𝐵 ) ) |