| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon | ⊢ ( 𝐵  ∈  ω  →  𝐵  ∈  On ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  𝐵  ∈  On ) | 
						
							| 3 |  | onelss | ⊢ ( 𝐵  ∈  On  →  ( 𝐴  ∈  𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 4 | 2 3 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 5 |  | nnawordex | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ⊆  𝐵  ↔  ∃ 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵 ) ) | 
						
							| 6 | 4 5 | sylibd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  →  ∃ 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵 ) ) | 
						
							| 7 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  ω )  →  𝐴  ∈  𝐵 ) | 
						
							| 8 |  | eleq2 | ⊢ ( ( 𝐴  +o  𝑥 )  =  𝐵  →  ( 𝐴  ∈  ( 𝐴  +o  𝑥 )  ↔  𝐴  ∈  𝐵 ) ) | 
						
							| 9 | 7 8 | syl5ibrcom | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  ω )  →  ( ( 𝐴  +o  𝑥 )  =  𝐵  →  𝐴  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 10 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 11 |  | nnaord | ⊢ ( ( ∅  ∈  ω  ∧  𝑥  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ∅  ∈  𝑥  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝑥  ∈  ω  ∧  𝐴  ∈  ω )  →  ( ∅  ∈  𝑥  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( ∅  ∈  𝑥  ↔  ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 14 |  | nna0 | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  +o  ∅ )  =  𝐴 ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( 𝐴  +o  ∅ )  =  𝐴 ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( ( 𝐴  +o  ∅ )  ∈  ( 𝐴  +o  𝑥 )  ↔  𝐴  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 17 | 13 16 | bitrd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( ∅  ∈  𝑥  ↔  𝐴  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 18 | 17 | adantlr | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  ω )  →  ( ∅  ∈  𝑥  ↔  𝐴  ∈  ( 𝐴  +o  𝑥 ) ) ) | 
						
							| 19 | 9 18 | sylibrd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  ω )  →  ( ( 𝐴  +o  𝑥 )  =  𝐵  →  ∅  ∈  𝑥 ) ) | 
						
							| 20 | 19 | ancrd | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  ∧  𝑥  ∈  ω )  →  ( ( 𝐴  +o  𝑥 )  =  𝐵  →  ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 21 | 20 | reximdva | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐴  ∈  𝐵 )  →  ( ∃ 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵  →  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝐴  ∈  ω  →  ( 𝐴  ∈  𝐵  →  ( ∃ 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵  →  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  →  ( ∃ 𝑥  ∈  ω ( 𝐴  +o  𝑥 )  =  𝐵  →  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) ) | 
						
							| 24 | 6 23 | mpdd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  →  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) | 
						
							| 25 | 17 | biimpa | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  ∧  ∅  ∈  𝑥 )  →  𝐴  ∈  ( 𝐴  +o  𝑥 ) ) | 
						
							| 26 | 25 8 | syl5ibcom | ⊢ ( ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  ∧  ∅  ∈  𝑥 )  →  ( ( 𝐴  +o  𝑥 )  =  𝐵  →  𝐴  ∈  𝐵 ) ) | 
						
							| 27 | 26 | expimpd | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  ω )  →  ( ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 28 | 27 | rexlimdva | ⊢ ( 𝐴  ∈  ω  →  ( ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 )  →  𝐴  ∈  𝐵 ) ) | 
						
							| 30 | 24 29 | impbid | ⊢ ( ( 𝐴  ∈  ω  ∧  𝐵  ∈  ω )  →  ( 𝐴  ∈  𝐵  ↔  ∃ 𝑥  ∈  ω ( ∅  ∈  𝑥  ∧  ( 𝐴  +o  𝑥 )  =  𝐵 ) ) ) |