Description: Every element of a ordinal is an ordinal. Lemma 1.3 of Schloeder p. 1. Based on onelon and eloni . (Contributed by RP, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelord | |- ( ( A e. On /\ B e. A ) -> Ord B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | |- ( ( A e. On /\ B e. A ) -> B e. On ) |
|
| 2 | eloni | |- ( B e. On -> Ord B ) |
|
| 3 | 1 2 | syl | |- ( ( A e. On /\ B e. A ) -> Ord B ) |