Description: Every element of a ordinal is an ordinal. Lemma 1.3 of Schloeder p. 1. Based on onelon and eloni . (Contributed by RP, 15-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onelord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → 𝐵 ∈ On ) | |
| 2 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |