Metamath Proof Explorer


Theorem onelord

Description: Every element of a ordinal is an ordinal. Lemma 1.3 of Schloeder p. 1. Based on onelon and eloni . (Contributed by RP, 15-Jan-2025)

Ref Expression
Assertion onelord ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → Ord 𝐵 )

Proof

Step Hyp Ref Expression
1 onelon ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → 𝐵 ∈ On )
2 eloni ( 𝐵 ∈ On → Ord 𝐵 )
3 1 2 syl ( ( 𝐴 ∈ On ∧ 𝐵𝐴 ) → Ord 𝐵 )