Step |
Hyp |
Ref |
Expression |
1 |
|
onminsb.1 |
|- F/ x ps |
2 |
|
onminsb.2 |
|- ( x = |^| { x e. On | ph } -> ( ph <-> ps ) ) |
3 |
|
rabn0 |
|- ( { x e. On | ph } =/= (/) <-> E. x e. On ph ) |
4 |
|
ssrab2 |
|- { x e. On | ph } C_ On |
5 |
|
onint |
|- ( ( { x e. On | ph } C_ On /\ { x e. On | ph } =/= (/) ) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
6 |
4 5
|
mpan |
|- ( { x e. On | ph } =/= (/) -> |^| { x e. On | ph } e. { x e. On | ph } ) |
7 |
3 6
|
sylbir |
|- ( E. x e. On ph -> |^| { x e. On | ph } e. { x e. On | ph } ) |
8 |
|
nfrab1 |
|- F/_ x { x e. On | ph } |
9 |
8
|
nfint |
|- F/_ x |^| { x e. On | ph } |
10 |
|
nfcv |
|- F/_ x On |
11 |
9 10 1 2
|
elrabf |
|- ( |^| { x e. On | ph } e. { x e. On | ph } <-> ( |^| { x e. On | ph } e. On /\ ps ) ) |
12 |
11
|
simprbi |
|- ( |^| { x e. On | ph } e. { x e. On | ph } -> ps ) |
13 |
7 12
|
syl |
|- ( E. x e. On ph -> ps ) |