Description: The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupuni2 | |- ( A e. ~P On -> sup ( A , On , _E ) = U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwb | |- ( A e. ~P On <-> ( A e. _V /\ A C_ On ) ) |
|
| 2 | onsupuni | |- ( ( A C_ On /\ A e. _V ) -> sup ( A , On , _E ) = U. A ) |
|
| 3 | 2 | ancoms | |- ( ( A e. _V /\ A C_ On ) -> sup ( A , On , _E ) = U. A ) |
| 4 | 1 3 | sylbi | |- ( A e. ~P On -> sup ( A , On , _E ) = U. A ) |