Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of Schloeder p. 5. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupintrab | |- ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onsupuni | |- ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = U. A ) | |
| 2 | onuniintrab |  |-  ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } ) | |
| 3 | 1 2 | eqtrd |  |-  ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |