Metamath Proof Explorer


Theorem onsupintrab

Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of Schloeder p. 5. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupintrab
|- ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } )

Proof

Step Hyp Ref Expression
1 onsupuni
 |-  ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = U. A )
2 onuniintrab
 |-  ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )
3 1 2 eqtrd
 |-  ( ( A C_ On /\ A e. V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } )