Metamath Proof Explorer


Theorem onuniintrab

Description: The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Closed form of uniordint . (Contributed by RP, 28-Jan-2025)

Ref Expression
Assertion onuniintrab
|- ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )

Proof

Step Hyp Ref Expression
1 ssonuni
 |-  ( A e. V -> ( A C_ On -> U. A e. On ) )
2 1 impcom
 |-  ( ( A C_ On /\ A e. V ) -> U. A e. On )
3 intmin
 |-  ( U. A e. On -> |^| { x e. On | U. A C_ x } = U. A )
4 unissb
 |-  ( U. A C_ x <-> A. y e. A y C_ x )
5 4 rabbii
 |-  { x e. On | U. A C_ x } = { x e. On | A. y e. A y C_ x }
6 5 inteqi
 |-  |^| { x e. On | U. A C_ x } = |^| { x e. On | A. y e. A y C_ x }
7 3 6 eqtr3di
 |-  ( U. A e. On -> U. A = |^| { x e. On | A. y e. A y C_ x } )
8 2 7 syl
 |-  ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )