Metamath Proof Explorer


Theorem onuniintrab

Description: The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Closed form of uniordint . (Contributed by RP, 28-Jan-2025)

Ref Expression
Assertion onuniintrab AOnAVA=xOn|yAyx

Proof

Step Hyp Ref Expression
1 ssonuni AVAOnAOn
2 1 impcom AOnAVAOn
3 intmin AOnxOn|Ax=A
4 unissb AxyAyx
5 4 rabbii xOn|Ax=xOn|yAyx
6 5 inteqi xOn|Ax=xOn|yAyx
7 3 6 eqtr3di AOnA=xOn|yAyx
8 2 7 syl AOnAVA=xOn|yAyx