Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupintrab2 | |- ( A e. ~P On -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwb | |- ( A e. ~P On <-> ( A e. _V /\ A C_ On ) ) | |
| 2 | onsupintrab |  |-  ( ( A C_ On /\ A e. _V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) | |
| 3 | 2 | ancoms |  |-  ( ( A e. _V /\ A C_ On ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) | 
| 4 | 1 3 | sylbi |  |-  ( A e. ~P On -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |