Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupintrab2 | |- ( A e. ~P On -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb | |- ( A e. ~P On <-> ( A e. _V /\ A C_ On ) ) |
|
2 | onsupintrab | |- ( ( A C_ On /\ A e. _V ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |
|
3 | 2 | ancoms | |- ( ( A e. _V /\ A C_ On ) -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |
4 | 1 3 | sylbi | |- ( A e. ~P On -> sup ( A , On , _E ) = |^| { x e. On | A. y e. A y C_ x } ) |