Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupintrab2 | ⊢ ( 𝐴 ∈ 𝒫 On → sup ( 𝐴 , On , E ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb | ⊢ ( 𝐴 ∈ 𝒫 On ↔ ( 𝐴 ∈ V ∧ 𝐴 ⊆ On ) ) | |
2 | onsupintrab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ V ) → sup ( 𝐴 , On , E ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ) | |
3 | 2 | ancoms | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ⊆ On ) → sup ( 𝐴 , On , E ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ) |
4 | 1 3 | sylbi | ⊢ ( 𝐴 ∈ 𝒫 On → sup ( 𝐴 , On , E ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ) |