Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupcl3 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ∈ On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onuniintrab | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∪ 𝐴 = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ) | |
| 2 | ssonuni | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ⊆ On → ∪ 𝐴 ∈ On ) ) | |
| 3 | 2 | impcom | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∪ 𝐴 ∈ On ) | 
| 4 | 1 3 | eqeltrrd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ∈ On ) |