Description: The supremum of a set of ordinals exists. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupex3 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsupcl3 | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ∈ On ) | |
2 | 1 | elexd | ⊢ ( ( 𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉 ) → ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 } ∈ V ) |