Metamath Proof Explorer


Theorem onsupex3

Description: The supremum of a set of ordinals exists. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupex3 A On A V x On | y A y x V

Proof

Step Hyp Ref Expression
1 onsupcl3 A On A V x On | y A y x On
2 1 elexd A On A V x On | y A y x V