Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Set Theory and Ordinal Numbers
onsupcl3
Next ⟩
onsupex3
Metamath Proof Explorer
Ascii
Unicode
Theorem
onsupcl3
Description:
The supremum of a set of ordinals is an ordinal.
(Contributed by
RP
, 23-Jan-2025)
Ref
Expression
Assertion
onsupcl3
⊢
A
⊆
On
∧
A
∈
V
→
⋂
x
∈
On
|
∀
y
∈
A
y
⊆
x
∈
On
Proof
Step
Hyp
Ref
Expression
1
onuniintrab
⊢
A
⊆
On
∧
A
∈
V
→
⋃
A
=
⋂
x
∈
On
|
∀
y
∈
A
y
⊆
x
2
ssonuni
⊢
A
∈
V
→
A
⊆
On
→
⋃
A
∈
On
3
2
impcom
⊢
A
⊆
On
∧
A
∈
V
→
⋃
A
∈
On
4
1
3
eqeltrrd
⊢
A
⊆
On
∧
A
∈
V
→
⋂
x
∈
On
|
∀
y
∈
A
y
⊆
x
∈
On