Metamath Proof Explorer


Theorem onsupcl3

Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupcl3 A On A V x On | y A y x On

Proof

Step Hyp Ref Expression
1 onuniintrab A On A V A = x On | y A y x
2 ssonuni A V A On A On
3 2 impcom A On A V A On
4 1 3 eqeltrrd A On A V x On | y A y x On