Metamath Proof Explorer


Theorem onsupcl3

Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion onsupcl3
|- ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On )

Proof

Step Hyp Ref Expression
1 onuniintrab
 |-  ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } )
2 ssonuni
 |-  ( A e. V -> ( A C_ On -> U. A e. On ) )
3 2 impcom
 |-  ( ( A C_ On /\ A e. V ) -> U. A e. On )
4 1 3 eqeltrrd
 |-  ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On )