Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupcl3 | |- ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onuniintrab | |- ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } ) |
|
2 | ssonuni | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) |
|
3 | 2 | impcom | |- ( ( A C_ On /\ A e. V ) -> U. A e. On ) |
4 | 1 3 | eqeltrrd | |- ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On ) |