Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsupcl3 | |- ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | onuniintrab |  |-  ( ( A C_ On /\ A e. V ) -> U. A = |^| { x e. On | A. y e. A y C_ x } ) | |
| 2 | ssonuni | |- ( A e. V -> ( A C_ On -> U. A e. On ) ) | |
| 3 | 2 | impcom | |- ( ( A C_ On /\ A e. V ) -> U. A e. On ) | 
| 4 | 1 3 | eqeltrrd |  |-  ( ( A C_ On /\ A e. V ) -> |^| { x e. On | A. y e. A y C_ x } e. On ) |