Metamath Proof Explorer


Theorem opabbi

Description: Equality deduction for class abstraction of ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Assertion opabbi
|- ( A. x A. y ( ph <-> ps ) -> { <. x , y >. | ph } = { <. x , y >. | ps } )

Proof

Step Hyp Ref Expression
1 eqopab2b
 |-  ( { <. x , y >. | ph } = { <. x , y >. | ps } <-> A. x A. y ( ph <-> ps ) )
2 1 biimpri
 |-  ( A. x A. y ( ph <-> ps ) -> { <. x , y >. | ph } = { <. x , y >. | ps } )