Metamath Proof Explorer


Theorem opabbi

Description: Equality deduction for class abstraction of ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Assertion opabbi ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )

Proof

Step Hyp Ref Expression
1 eqopab2b ( { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } ↔ ∀ 𝑥𝑦 ( 𝜑𝜓 ) )
2 1 biimpri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) → { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } = { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )