| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptbi12f.1 |
⊢ Ⅎ 𝑥 𝐴 |
| 2 |
|
mptbi12f.2 |
⊢ Ⅎ 𝑥 𝐵 |
| 3 |
1 2
|
nfeq |
⊢ Ⅎ 𝑥 𝐴 = 𝐵 |
| 4 |
|
eleq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 5 |
3 4
|
alrimi |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 |
|
ax-5 |
⊢ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) → ∀ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 |
5 6
|
sylg |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 8 |
|
eqeq2 |
⊢ ( 𝐷 = 𝐸 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) |
| 9 |
8
|
alrimiv |
⊢ ( 𝐷 = 𝐸 → ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) |
| 10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) |
| 11 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 12 |
10 11
|
sylib |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 13 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 14 |
13
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 15 |
12 14
|
sylibr |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 → ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 16 |
|
id |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 17 |
16
|
alanimi |
⊢ ( ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 18 |
17
|
alanimi |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 19 |
7 15 18
|
syl2an |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 20 |
|
tsan2 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( 𝑥 ∈ 𝐴 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 21 |
20
|
ord |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 22 |
|
tsbi2 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 23 |
22
|
ord |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 24 |
23
|
a1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) → ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) |
| 25 |
|
ax-1 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) |
| 26 |
24 25
|
contrd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 27 |
26
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 28 |
21 27
|
cnf1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 29 |
|
simplim |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 30 |
29
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 31 |
|
tsbi3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 32 |
31
|
ord |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) → ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 33 |
|
tsan2 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 34 |
33
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) ) |
| 35 |
32 34
|
cnf1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) → ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 36 |
30 35
|
contrd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ) |
| 37 |
36
|
ord |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) |
| 38 |
|
tsan2 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 39 |
38
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 40 |
37 39
|
cnf1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ 𝑥 ∈ 𝐴 → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 41 |
28 40
|
contrd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 42 |
41
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐴 ) ) |
| 43 |
29
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 44 |
|
tsan3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 45 |
44
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) ) |
| 46 |
43 45
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 47 |
42 46
|
mpdd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 48 |
|
notnotr |
⊢ ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) |
| 49 |
48
|
a1i |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 50 |
38
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐵 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 51 |
49 50
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → 𝑥 ∈ 𝐵 ) ) |
| 52 |
36
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐴 ∨ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 53 |
51 52
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → 𝑥 ∈ 𝐴 ) ) |
| 54 |
|
tsan3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( 𝑦 = 𝐸 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 55 |
54
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑦 = 𝐸 ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 56 |
49 55
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → 𝑦 = 𝐸 ) ) |
| 57 |
29
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) |
| 58 |
44
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) ) |
| 59 |
57 58
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 60 |
53 59
|
mpdd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 61 |
|
tsbi3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( 𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸 ) ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 62 |
61
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ( 𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸 ) ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 63 |
60 62
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑦 = 𝐷 ∨ ¬ 𝑦 = 𝐸 ) ) ) |
| 64 |
56 63
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → 𝑦 = 𝐷 ) ) |
| 65 |
53 64
|
jcad |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 66 |
|
ax-1 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) |
| 67 |
|
tsim3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) |
| 68 |
67
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ∨ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) ) |
| 69 |
66 68
|
cnf2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ¬ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 70 |
|
tsbi1 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 71 |
70
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ∨ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) ) |
| 72 |
69 71
|
cnf2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ( ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 73 |
49 72
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) → ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 74 |
65 73
|
contrd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) |
| 75 |
74
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 76 |
26
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 77 |
75 76
|
cnf2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 78 |
|
tsan3 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( 𝑦 = 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) |
| 79 |
78
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( 𝑦 = 𝐷 ∨ ¬ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ) ) ) |
| 80 |
77 79
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → 𝑦 = 𝐷 ) ) |
| 81 |
33
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∨ ¬ ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) ) ) |
| 82 |
43 81
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 83 |
|
tsbi4 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( ¬ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) |
| 84 |
83
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∨ ¬ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) ) ) |
| 85 |
82 84
|
cnfn2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) ) |
| 86 |
42 85
|
cnfn1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → 𝑥 ∈ 𝐵 ) ) |
| 87 |
|
tsan1 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 88 |
87
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) ) |
| 89 |
75 88
|
cnf2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑥 ∈ 𝐵 ∨ ¬ 𝑦 = 𝐸 ) ) ) |
| 90 |
86 89
|
cnfn1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ¬ 𝑦 = 𝐸 ) ) |
| 91 |
|
tsbi4 |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ( ¬ 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 92 |
91
|
a1d |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 = 𝐷 ∨ 𝑦 = 𝐸 ) ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 93 |
92
|
or32dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ( ¬ 𝑦 = 𝐷 ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ∨ 𝑦 = 𝐸 ) ) ) |
| 94 |
90 93
|
cnf2dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ( ¬ 𝑦 = 𝐷 ∨ ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) ) |
| 95 |
80 94
|
cnfn1dd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ( ¬ ⊥ → ¬ ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) |
| 96 |
47 95
|
contrd |
⊢ ( ¬ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) → ⊥ ) |
| 97 |
96
|
efald2 |
⊢ ( ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 98 |
97
|
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐴 → ( 𝑦 = 𝐷 ↔ 𝑦 = 𝐸 ) ) ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 99 |
19 98
|
syl |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 ) → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 100 |
|
eqopab2bw |
⊢ ( { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) } ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) ) ) |
| 101 |
99 100
|
sylibr |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 ) → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) } ) |
| 102 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐷 ) } |
| 103 |
|
df-mpt |
⊢ ( 𝑥 ∈ 𝐵 ↦ 𝐸 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 = 𝐸 ) } |
| 104 |
101 102 103
|
3eqtr4g |
⊢ ( ( 𝐴 = 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝐷 = 𝐸 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐷 ) = ( 𝑥 ∈ 𝐵 ↦ 𝐸 ) ) |