Metamath Proof Explorer


Theorem or32dd

Description: A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis or32dd.1 ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜃 ) ∨ 𝜏 ) ) )
Assertion or32dd ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜏 ) ∨ 𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 or32dd.1 ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜃 ) ∨ 𝜏 ) ) )
2 or32 ( ( ( 𝜒𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜒𝜃 ) ∨ 𝜏 ) )
3 1 2 syl6ibr ( 𝜑 → ( 𝜓 → ( ( 𝜒𝜏 ) ∨ 𝜃 ) ) )