Metamath Proof Explorer
Description: A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)
|
|
Ref |
Expression |
|
Hypothesis |
or32dd.1 |
⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜃 ) ∨ 𝜏 ) ) ) |
|
Assertion |
or32dd |
⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜏 ) ∨ 𝜃 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
or32dd.1 |
⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜃 ) ∨ 𝜏 ) ) ) |
2 |
|
or32 |
⊢ ( ( ( 𝜒 ∨ 𝜏 ) ∨ 𝜃 ) ↔ ( ( 𝜒 ∨ 𝜃 ) ∨ 𝜏 ) ) |
3 |
1 2
|
syl6ibr |
⊢ ( 𝜑 → ( 𝜓 → ( ( 𝜒 ∨ 𝜏 ) ∨ 𝜃 ) ) ) |