Metamath Proof Explorer


Theorem or32dd

Description: A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis or32dd.1
|- ( ph -> ( ps -> ( ( ch \/ th ) \/ ta ) ) )
Assertion or32dd
|- ( ph -> ( ps -> ( ( ch \/ ta ) \/ th ) ) )

Proof

Step Hyp Ref Expression
1 or32dd.1
 |-  ( ph -> ( ps -> ( ( ch \/ th ) \/ ta ) ) )
2 or32
 |-  ( ( ( ch \/ ta ) \/ th ) <-> ( ( ch \/ th ) \/ ta ) )
3 1 2 syl6ibr
 |-  ( ph -> ( ps -> ( ( ch \/ ta ) \/ th ) ) )