Metamath Proof Explorer


Theorem notornotel1

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis notornotel1.1
|- ( ph -> -. ( -. ps \/ ch ) )
Assertion notornotel1
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 notornotel1.1
 |-  ( ph -> -. ( -. ps \/ ch ) )
2 ioran
 |-  ( -. ( -. ps \/ ch ) <-> ( -. -. ps /\ -. ch ) )
3 2 biimpi
 |-  ( -. ( -. ps \/ ch ) -> ( -. -. ps /\ -. ch ) )
4 simpl
 |-  ( ( -. -. ps /\ -. ch ) -> -. -. ps )
5 notnotr
 |-  ( -. -. ps -> ps )
6 3 4 5 3syl
 |-  ( -. ( -. ps \/ ch ) -> ps )
7 1 6 syl
 |-  ( ph -> ps )