Metamath Proof Explorer


Theorem notornotel2

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis notornotel2.1
|- ( ph -> -. ( ps \/ -. ch ) )
Assertion notornotel2
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 notornotel2.1
 |-  ( ph -> -. ( ps \/ -. ch ) )
2 orcom
 |-  ( ( -. ch \/ ps ) <-> ( ps \/ -. ch ) )
3 1 2 sylnibr
 |-  ( ph -> -. ( -. ch \/ ps ) )
4 3 notornotel1
 |-  ( ph -> ch )