Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | contrd.1 | |- ( ph -> ( -. ps -> ch ) ) |
|
| contrd.2 | |- ( ph -> ( -. ps -> -. ch ) ) |
||
| Assertion | contrd | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | contrd.1 | |- ( ph -> ( -. ps -> ch ) ) |
|
| 2 | contrd.2 | |- ( ph -> ( -. ps -> -. ch ) ) |
|
| 3 | 1 2 | jcad | |- ( ph -> ( -. ps -> ( ch /\ -. ch ) ) ) |
| 4 | pm2.24 | |- ( ch -> ( -. ch -> ps ) ) |
|
| 5 | 4 | imp | |- ( ( ch /\ -. ch ) -> ps ) |
| 6 | 5 | imim2i | |- ( ( -. ps -> ( ch /\ -. ch ) ) -> ( -. ps -> ps ) ) |
| 7 | 6 | pm2.18d | |- ( ( -. ps -> ( ch /\ -. ch ) ) -> ps ) |
| 8 | 3 7 | syl | |- ( ph -> ps ) |