Metamath Proof Explorer


Theorem contrd

Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses contrd.1
|- ( ph -> ( -. ps -> ch ) )
contrd.2
|- ( ph -> ( -. ps -> -. ch ) )
Assertion contrd
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 contrd.1
 |-  ( ph -> ( -. ps -> ch ) )
2 contrd.2
 |-  ( ph -> ( -. ps -> -. ch ) )
3 1 2 jcad
 |-  ( ph -> ( -. ps -> ( ch /\ -. ch ) ) )
4 pm2.24
 |-  ( ch -> ( -. ch -> ps ) )
5 4 imp
 |-  ( ( ch /\ -. ch ) -> ps )
6 5 imim2i
 |-  ( ( -. ps -> ( ch /\ -. ch ) ) -> ( -. ps -> ps ) )
7 6 pm2.18d
 |-  ( ( -. ps -> ( ch /\ -. ch ) ) -> ps )
8 3 7 syl
 |-  ( ph -> ps )