Metamath Proof Explorer


Theorem contrd

Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses contrd.1 φ ¬ ψ χ
contrd.2 φ ¬ ψ ¬ χ
Assertion contrd φ ψ

Proof

Step Hyp Ref Expression
1 contrd.1 φ ¬ ψ χ
2 contrd.2 φ ¬ ψ ¬ χ
3 1 2 jcad φ ¬ ψ χ ¬ χ
4 pm2.24 χ ¬ χ ψ
5 4 imp χ ¬ χ ψ
6 5 imim2i ¬ ψ χ ¬ χ ¬ ψ ψ
7 6 pm2.18d ¬ ψ χ ¬ χ ψ
8 3 7 syl φ ψ