Metamath Proof Explorer


Theorem contrd

Description: A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypotheses contrd.1 ( 𝜑 → ( ¬ 𝜓𝜒 ) )
contrd.2 ( 𝜑 → ( ¬ 𝜓 → ¬ 𝜒 ) )
Assertion contrd ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 contrd.1 ( 𝜑 → ( ¬ 𝜓𝜒 ) )
2 contrd.2 ( 𝜑 → ( ¬ 𝜓 → ¬ 𝜒 ) )
3 1 2 jcad ( 𝜑 → ( ¬ 𝜓 → ( 𝜒 ∧ ¬ 𝜒 ) ) )
4 pm2.24 ( 𝜒 → ( ¬ 𝜒𝜓 ) )
5 4 imp ( ( 𝜒 ∧ ¬ 𝜒 ) → 𝜓 )
6 5 imim2i ( ( ¬ 𝜓 → ( 𝜒 ∧ ¬ 𝜒 ) ) → ( ¬ 𝜓𝜓 ) )
7 6 pm2.18d ( ( ¬ 𝜓 → ( 𝜒 ∧ ¬ 𝜒 ) ) → 𝜓 )
8 3 7 syl ( 𝜑𝜓 )