Metamath Proof Explorer


Theorem an12i

Description: An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019)

Ref Expression
Hypothesis an12i.1 ( 𝜑 ∧ ( 𝜓𝜒 ) )
Assertion an12i ( 𝜓 ∧ ( 𝜑𝜒 ) )

Proof

Step Hyp Ref Expression
1 an12i.1 ( 𝜑 ∧ ( 𝜓𝜒 ) )
2 an12 ( ( 𝜓 ∧ ( 𝜑𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 1 2 mpbir ( 𝜓 ∧ ( 𝜑𝜒 ) )