Metamath Proof Explorer
Description: An inference from commuting operands in a chain of conjunctions.
(Contributed by Giovanni Mascellani, 22-May-2019)
|
|
Ref |
Expression |
|
Hypothesis |
an12i.1 |
⊢ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) |
|
Assertion |
an12i |
⊢ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
an12i.1 |
⊢ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) |
2 |
|
an12 |
⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
3 |
1 2
|
mpbir |
⊢ ( 𝜓 ∧ ( 𝜑 ∧ 𝜒 ) ) |