Metamath Proof Explorer


Theorem an12i

Description: An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019)

Ref Expression
Hypothesis an12i.1
|- ( ph /\ ( ps /\ ch ) )
Assertion an12i
|- ( ps /\ ( ph /\ ch ) )

Proof

Step Hyp Ref Expression
1 an12i.1
 |-  ( ph /\ ( ps /\ ch ) )
2 an12
 |-  ( ( ps /\ ( ph /\ ch ) ) <-> ( ph /\ ( ps /\ ch ) ) )
3 1 2 mpbir
 |-  ( ps /\ ( ph /\ ch ) )