Metamath Proof Explorer


Theorem exmid2

Description: An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypotheses exmid2.1
|- ( ( ps /\ ph ) -> ch )
exmid2.2
|- ( ( -. ps /\ et ) -> ch )
Assertion exmid2
|- ( ( ph /\ et ) -> ch )

Proof

Step Hyp Ref Expression
1 exmid2.1
 |-  ( ( ps /\ ph ) -> ch )
2 exmid2.2
 |-  ( ( -. ps /\ et ) -> ch )
3 simpl
 |-  ( ( ph /\ et ) -> ph )
4 3 anim2i
 |-  ( ( ps /\ ( ph /\ et ) ) -> ( ps /\ ph ) )
5 4 ancoms
 |-  ( ( ( ph /\ et ) /\ ps ) -> ( ps /\ ph ) )
6 5 1 syl
 |-  ( ( ( ph /\ et ) /\ ps ) -> ch )
7 simpr
 |-  ( ( ph /\ et ) -> et )
8 7 anim2i
 |-  ( ( -. ps /\ ( ph /\ et ) ) -> ( -. ps /\ et ) )
9 8 ancoms
 |-  ( ( ( ph /\ et ) /\ -. ps ) -> ( -. ps /\ et ) )
10 9 2 syl
 |-  ( ( ( ph /\ et ) /\ -. ps ) -> ch )
11 6 10 pm2.61dan
 |-  ( ( ph /\ et ) -> ch )