Step |
Hyp |
Ref |
Expression |
1 |
|
exmid2.1 |
|- ( ( ps /\ ph ) -> ch ) |
2 |
|
exmid2.2 |
|- ( ( -. ps /\ et ) -> ch ) |
3 |
|
simpl |
|- ( ( ph /\ et ) -> ph ) |
4 |
3
|
anim2i |
|- ( ( ps /\ ( ph /\ et ) ) -> ( ps /\ ph ) ) |
5 |
4
|
ancoms |
|- ( ( ( ph /\ et ) /\ ps ) -> ( ps /\ ph ) ) |
6 |
5 1
|
syl |
|- ( ( ( ph /\ et ) /\ ps ) -> ch ) |
7 |
|
simpr |
|- ( ( ph /\ et ) -> et ) |
8 |
7
|
anim2i |
|- ( ( -. ps /\ ( ph /\ et ) ) -> ( -. ps /\ et ) ) |
9 |
8
|
ancoms |
|- ( ( ( ph /\ et ) /\ -. ps ) -> ( -. ps /\ et ) ) |
10 |
9 2
|
syl |
|- ( ( ( ph /\ et ) /\ -. ps ) -> ch ) |
11 |
6 10
|
pm2.61dan |
|- ( ( ph /\ et ) -> ch ) |