Metamath Proof Explorer


Theorem exmid2

Description: An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypotheses exmid2.1 ψ φ χ
exmid2.2 ¬ ψ η χ
Assertion exmid2 φ η χ

Proof

Step Hyp Ref Expression
1 exmid2.1 ψ φ χ
2 exmid2.2 ¬ ψ η χ
3 simpl φ η φ
4 3 anim2i ψ φ η ψ φ
5 4 ancoms φ η ψ ψ φ
6 5 1 syl φ η ψ χ
7 simpr φ η η
8 7 anim2i ¬ ψ φ η ¬ ψ η
9 8 ancoms φ η ¬ ψ ¬ ψ η
10 9 2 syl φ η ¬ ψ χ
11 6 10 pm2.61dan φ η χ