Description: An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | exmid2.1 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) | |
exmid2.2 | ⊢ ( ( ¬ 𝜓 ∧ 𝜂 ) → 𝜒 ) | ||
Assertion | exmid2 | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmid2.1 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) | |
2 | exmid2.2 | ⊢ ( ( ¬ 𝜓 ∧ 𝜂 ) → 𝜒 ) | |
3 | simpl | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜑 ) | |
4 | 3 | anim2i | ⊢ ( ( 𝜓 ∧ ( 𝜑 ∧ 𝜂 ) ) → ( 𝜓 ∧ 𝜑 ) ) |
5 | 4 | ancoms | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) → ( 𝜓 ∧ 𝜑 ) ) |
6 | 5 1 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ 𝜓 ) → 𝜒 ) |
7 | simpr | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜂 ) | |
8 | 7 | anim2i | ⊢ ( ( ¬ 𝜓 ∧ ( 𝜑 ∧ 𝜂 ) ) → ( ¬ 𝜓 ∧ 𝜂 ) ) |
9 | 8 | ancoms | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ ¬ 𝜓 ) → ( ¬ 𝜓 ∧ 𝜂 ) ) |
10 | 9 2 | syl | ⊢ ( ( ( 𝜑 ∧ 𝜂 ) ∧ ¬ 𝜓 ) → 𝜒 ) |
11 | 6 10 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝜂 ) → 𝜒 ) |