Metamath Proof Explorer


Theorem exmid2

Description: An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypotheses exmid2.1 ( ( 𝜓𝜑 ) → 𝜒 )
exmid2.2 ( ( ¬ 𝜓𝜂 ) → 𝜒 )
Assertion exmid2 ( ( 𝜑𝜂 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 exmid2.1 ( ( 𝜓𝜑 ) → 𝜒 )
2 exmid2.2 ( ( ¬ 𝜓𝜂 ) → 𝜒 )
3 simpl ( ( 𝜑𝜂 ) → 𝜑 )
4 3 anim2i ( ( 𝜓 ∧ ( 𝜑𝜂 ) ) → ( 𝜓𝜑 ) )
5 4 ancoms ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) → ( 𝜓𝜑 ) )
6 5 1 syl ( ( ( 𝜑𝜂 ) ∧ 𝜓 ) → 𝜒 )
7 simpr ( ( 𝜑𝜂 ) → 𝜂 )
8 7 anim2i ( ( ¬ 𝜓 ∧ ( 𝜑𝜂 ) ) → ( ¬ 𝜓𝜂 ) )
9 8 ancoms ( ( ( 𝜑𝜂 ) ∧ ¬ 𝜓 ) → ( ¬ 𝜓𝜂 ) )
10 9 2 syl ( ( ( 𝜑𝜂 ) ∧ ¬ 𝜓 ) → 𝜒 )
11 6 10 pm2.61dan ( ( 𝜑𝜂 ) → 𝜒 )