Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypothesis | selconj.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
Assertion | selconj | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selconj.1 | ⊢ ( 𝜑 ↔ ( 𝜓 ∧ 𝜒 ) ) | |
2 | 1 | anbi2i | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜂 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
3 | an12 | ⊢ ( ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ↔ ( 𝜂 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
4 | 2 3 | bitr4i | ⊢ ( ( 𝜂 ∧ 𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂 ∧ 𝜒 ) ) ) |