Metamath Proof Explorer


Theorem selconj

Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypothesis selconj.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
Assertion selconj ( ( 𝜂𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 selconj.1 ( 𝜑 ↔ ( 𝜓𝜒 ) )
2 1 anbi2i ( ( 𝜂𝜑 ) ↔ ( 𝜂 ∧ ( 𝜓𝜒 ) ) )
3 an12 ( ( 𝜓 ∧ ( 𝜂𝜒 ) ) ↔ ( 𝜂 ∧ ( 𝜓𝜒 ) ) )
4 2 3 bitr4i ( ( 𝜂𝜑 ) ↔ ( 𝜓 ∧ ( 𝜂𝜒 ) ) )