Metamath Proof Explorer


Theorem truconj

Description: Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Assertion truconj ( 𝜑 ↔ ( ⊤ ∧ 𝜑 ) )

Proof

Step Hyp Ref Expression
1 truan ( ( ⊤ ∧ 𝜑 ) ↔ 𝜑 )
2 1 bicomi ( 𝜑 ↔ ( ⊤ ∧ 𝜑 ) )