Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | orel.1 | ⊢ ( ( 𝜓 ∧ 𝜂 ) → 𝜃 ) | |
| orel.2 | ⊢ ( ( 𝜒 ∧ 𝜌 ) → 𝜃 ) | ||
| orel.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | ||
| Assertion | orel | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orel.1 | ⊢ ( ( 𝜓 ∧ 𝜂 ) → 𝜃 ) | |
| 2 | orel.2 | ⊢ ( ( 𝜒 ∧ 𝜌 ) → 𝜃 ) | |
| 3 | orel.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | |
| 4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜂 ) | |
| 5 | 1 | ancoms | ⊢ ( ( 𝜂 ∧ 𝜓 ) → 𝜃 ) |
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) ∧ 𝜓 ) → 𝜃 ) |
| 7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜌 ) | |
| 8 | 2 | ancoms | ⊢ ( ( 𝜌 ∧ 𝜒 ) → 𝜃 ) |
| 9 | 7 8 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) ∧ 𝜒 ) → 𝜃 ) |
| 10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → ( 𝜓 ∨ 𝜒 ) ) |
| 11 | 6 9 10 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜃 ) |