Metamath Proof Explorer


Theorem orel

Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypotheses orel.1 ( ( 𝜓𝜂 ) → 𝜃 )
orel.2 ( ( 𝜒𝜌 ) → 𝜃 )
orel.3 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion orel ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 orel.1 ( ( 𝜓𝜂 ) → 𝜃 )
2 orel.2 ( ( 𝜒𝜌 ) → 𝜃 )
3 orel.3 ( 𝜑 → ( 𝜓𝜒 ) )
4 simprl ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) → 𝜂 )
5 1 ancoms ( ( 𝜂𝜓 ) → 𝜃 )
6 4 5 sylan ( ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) ∧ 𝜓 ) → 𝜃 )
7 simprr ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) → 𝜌 )
8 2 ancoms ( ( 𝜌𝜒 ) → 𝜃 )
9 7 8 sylan ( ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) ∧ 𝜒 ) → 𝜃 )
10 3 adantr ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) → ( 𝜓𝜒 ) )
11 6 9 10 mpjaodan ( ( 𝜑 ∧ ( 𝜂𝜌 ) ) → 𝜃 )