Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | orel.1 | ⊢ ( ( 𝜓 ∧ 𝜂 ) → 𝜃 ) | |
orel.2 | ⊢ ( ( 𝜒 ∧ 𝜌 ) → 𝜃 ) | ||
orel.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | ||
Assertion | orel | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orel.1 | ⊢ ( ( 𝜓 ∧ 𝜂 ) → 𝜃 ) | |
2 | orel.2 | ⊢ ( ( 𝜒 ∧ 𝜌 ) → 𝜃 ) | |
3 | orel.3 | ⊢ ( 𝜑 → ( 𝜓 ∨ 𝜒 ) ) | |
4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜂 ) | |
5 | 1 | ancoms | ⊢ ( ( 𝜂 ∧ 𝜓 ) → 𝜃 ) |
6 | 4 5 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) ∧ 𝜓 ) → 𝜃 ) |
7 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜌 ) | |
8 | 2 | ancoms | ⊢ ( ( 𝜌 ∧ 𝜒 ) → 𝜃 ) |
9 | 7 8 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) ∧ 𝜒 ) → 𝜃 ) |
10 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → ( 𝜓 ∨ 𝜒 ) ) |
11 | 6 9 10 | mpjaodan | ⊢ ( ( 𝜑 ∧ ( 𝜂 ∧ 𝜌 ) ) → 𝜃 ) |