Metamath Proof Explorer


Theorem orel

Description: An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypotheses orel.1 ψ η θ
orel.2 χ ρ θ
orel.3 φ ψ χ
Assertion orel φ η ρ θ

Proof

Step Hyp Ref Expression
1 orel.1 ψ η θ
2 orel.2 χ ρ θ
3 orel.3 φ ψ χ
4 simprl φ η ρ η
5 1 ancoms η ψ θ
6 4 5 sylan φ η ρ ψ θ
7 simprr φ η ρ ρ
8 2 ancoms ρ χ θ
9 7 8 sylan φ η ρ χ θ
10 3 adantr φ η ρ ψ χ
11 6 9 10 mpjaodan φ η ρ θ