Metamath Proof Explorer


Theorem negel

Description: An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypotheses negel.1 ( 𝜓𝜒 )
negel.2 ( 𝜑 → ¬ 𝜒 )
Assertion negel ( ( 𝜑𝜓 ) → ⊥ )

Proof

Step Hyp Ref Expression
1 negel.1 ( 𝜓𝜒 )
2 negel.2 ( 𝜑 → ¬ 𝜒 )
3 1 adantl ( ( 𝜑𝜓 ) → 𝜒 )
4 2 adantr ( ( 𝜑𝜓 ) → ¬ 𝜒 )
5 3 4 pm2.21fal ( ( 𝜑𝜓 ) → ⊥ )