Metamath Proof Explorer


Theorem negel

Description: An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019)

Ref Expression
Hypotheses negel.1
|- ( ps -> ch )
negel.2
|- ( ph -> -. ch )
Assertion negel
|- ( ( ph /\ ps ) -> F. )

Proof

Step Hyp Ref Expression
1 negel.1
 |-  ( ps -> ch )
2 negel.2
 |-  ( ph -> -. ch )
3 1 adantl
 |-  ( ( ph /\ ps ) -> ch )
4 2 adantr
 |-  ( ( ph /\ ps ) -> -. ch )
5 3 4 pm2.21fal
 |-  ( ( ph /\ ps ) -> F. )