Metamath Proof Explorer


Theorem selconj

Description: An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019)

Ref Expression
Hypothesis selconj.1
|- ( ph <-> ( ps /\ ch ) )
Assertion selconj
|- ( ( et /\ ph ) <-> ( ps /\ ( et /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 selconj.1
 |-  ( ph <-> ( ps /\ ch ) )
2 1 anbi2i
 |-  ( ( et /\ ph ) <-> ( et /\ ( ps /\ ch ) ) )
3 an12
 |-  ( ( ps /\ ( et /\ ch ) ) <-> ( et /\ ( ps /\ ch ) ) )
4 2 3 bitr4i
 |-  ( ( et /\ ph ) <-> ( ps /\ ( et /\ ch ) ) )