Metamath Proof Explorer


Theorem notornotel2

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis notornotel2.1 ( 𝜑 → ¬ ( 𝜓 ∨ ¬ 𝜒 ) )
Assertion notornotel2 ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 notornotel2.1 ( 𝜑 → ¬ ( 𝜓 ∨ ¬ 𝜒 ) )
2 orcom ( ( ¬ 𝜒𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜒 ) )
3 1 2 sylnibr ( 𝜑 → ¬ ( ¬ 𝜒𝜓 ) )
4 3 notornotel1 ( 𝜑𝜒 )