Metamath Proof Explorer
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)
|
|
Ref |
Expression |
|
Hypothesis |
notornotel2.1 |
⊢ ( 𝜑 → ¬ ( 𝜓 ∨ ¬ 𝜒 ) ) |
|
Assertion |
notornotel2 |
⊢ ( 𝜑 → 𝜒 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
notornotel2.1 |
⊢ ( 𝜑 → ¬ ( 𝜓 ∨ ¬ 𝜒 ) ) |
2 |
|
orcom |
⊢ ( ( ¬ 𝜒 ∨ 𝜓 ) ↔ ( 𝜓 ∨ ¬ 𝜒 ) ) |
3 |
1 2
|
sylnibr |
⊢ ( 𝜑 → ¬ ( ¬ 𝜒 ∨ 𝜓 ) ) |
4 |
3
|
notornotel1 |
⊢ ( 𝜑 → 𝜒 ) |