Metamath Proof Explorer
Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)
|
|
Ref |
Expression |
|
Hypothesis |
notornotel1.1 |
⊢ ( 𝜑 → ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
|
Assertion |
notornotel1 |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
notornotel1.1 |
⊢ ( 𝜑 → ¬ ( ¬ 𝜓 ∨ 𝜒 ) ) |
2 |
|
ioran |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) ↔ ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
3 |
2
|
biimpi |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) → ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) ) |
4 |
|
simpl |
⊢ ( ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) → ¬ ¬ 𝜓 ) |
5 |
|
notnotr |
⊢ ( ¬ ¬ 𝜓 → 𝜓 ) |
6 |
3 4 5
|
3syl |
⊢ ( ¬ ( ¬ 𝜓 ∨ 𝜒 ) → 𝜓 ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → 𝜓 ) |