Metamath Proof Explorer


Theorem notornotel1

Description: A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018)

Ref Expression
Hypothesis notornotel1.1 ( 𝜑 → ¬ ( ¬ 𝜓𝜒 ) )
Assertion notornotel1 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 notornotel1.1 ( 𝜑 → ¬ ( ¬ 𝜓𝜒 ) )
2 ioran ( ¬ ( ¬ 𝜓𝜒 ) ↔ ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) )
3 2 biimpi ( ¬ ( ¬ 𝜓𝜒 ) → ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) )
4 simpl ( ( ¬ ¬ 𝜓 ∧ ¬ 𝜒 ) → ¬ ¬ 𝜓 )
5 notnotr ( ¬ ¬ 𝜓𝜓 )
6 3 4 5 3syl ( ¬ ( ¬ 𝜓𝜒 ) → 𝜓 )
7 1 6 syl ( 𝜑𝜓 )