Metamath Proof Explorer


Theorem efald2

Description: A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis efald2.1 ( ¬ 𝜑 → ⊥ )
Assertion efald2 𝜑

Proof

Step Hyp Ref Expression
1 efald2.1 ( ¬ 𝜑 → ⊥ )
2 1 adantl ( ( ⊤ ∧ ¬ 𝜑 ) → ⊥ )
3 2 efald ( ⊤ → 𝜑 )
4 3 mptru 𝜑