Metamath Proof Explorer


Theorem efald2

Description: A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis efald2.1 ¬ φ
Assertion efald2 φ

Proof

Step Hyp Ref Expression
1 efald2.1 ¬ φ
2 1 adantl ¬ φ
3 2 efald φ
4 3 mptru φ