Metamath Proof Explorer


Theorem efald2

Description: A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Hypothesis efald2.1
|- ( -. ph -> F. )
Assertion efald2
|- ph

Proof

Step Hyp Ref Expression
1 efald2.1
 |-  ( -. ph -> F. )
2 1 adantl
 |-  ( ( T. /\ -. ph ) -> F. )
3 2 efald
 |-  ( T. -> ph )
4 3 mptru
 |-  ph