Metamath Proof Explorer


Theorem efald

Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017)

Ref Expression
Hypothesis efald.1 φ¬ψ
Assertion efald φψ

Proof

Step Hyp Ref Expression
1 efald.1 φ¬ψ
2 1 inegd φ¬¬ψ
3 2 notnotrd φψ