| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opeldmd.1 |  |-  ( ph -> A e. V ) | 
						
							| 2 |  | opeldmd.2 |  |-  ( ph -> B e. W ) | 
						
							| 3 |  | opeq2 |  |-  ( y = B -> <. A , y >. = <. A , B >. ) | 
						
							| 4 | 3 | eleq1d |  |-  ( y = B -> ( <. A , y >. e. C <-> <. A , B >. e. C ) ) | 
						
							| 5 | 4 | spcegv |  |-  ( B e. W -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( <. A , B >. e. C -> E. y <. A , y >. e. C ) ) | 
						
							| 7 |  | eldm2g |  |-  ( A e. V -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( A e. dom C <-> E. y <. A , y >. e. C ) ) | 
						
							| 9 | 6 8 | sylibrd |  |-  ( ph -> ( <. A , B >. e. C -> A e. dom C ) ) |