Metamath Proof Explorer


Theorem opnneieqv

Description: The equivalence between neighborhood and open neighborhood. See opnneieqvv for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypotheses opnneir.1
|- ( ph -> J e. Top )
opnneilv.2
|- ( ( ph /\ y C_ x ) -> ( ps -> ch ) )
opnneil.3
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion opnneieqv
|- ( ph -> ( E. x e. ( ( nei ` J ) ` S ) ps <-> E. x e. J ( S C_ x /\ ps ) ) )

Proof

Step Hyp Ref Expression
1 opnneir.1
 |-  ( ph -> J e. Top )
2 opnneilv.2
 |-  ( ( ph /\ y C_ x ) -> ( ps -> ch ) )
3 opnneil.3
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
4 1 2 3 opnneil
 |-  ( ph -> ( E. x e. ( ( nei ` J ) ` S ) ps -> E. x e. J ( S C_ x /\ ps ) ) )
5 1 opnneir
 |-  ( ph -> ( E. x e. J ( S C_ x /\ ps ) -> E. x e. ( ( nei ` J ) ` S ) ps ) )
6 4 5 impbid
 |-  ( ph -> ( E. x e. ( ( nei ` J ) ` S ) ps <-> E. x e. J ( S C_ x /\ ps ) ) )