Metamath Proof Explorer


Theorem opnneir

Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypothesis opnneir.1
|- ( ph -> J e. Top )
Assertion opnneir
|- ( ph -> ( E. x e. J ( S C_ x /\ ps ) -> E. x e. ( ( nei ` J ) ` S ) ps ) )

Proof

Step Hyp Ref Expression
1 opnneir.1
 |-  ( ph -> J e. Top )
2 anass
 |-  ( ( ( x e. J /\ S C_ x ) /\ ps ) <-> ( x e. J /\ ( S C_ x /\ ps ) ) )
3 opnneiss
 |-  ( ( J e. Top /\ x e. J /\ S C_ x ) -> x e. ( ( nei ` J ) ` S ) )
4 3 3expib
 |-  ( J e. Top -> ( ( x e. J /\ S C_ x ) -> x e. ( ( nei ` J ) ` S ) ) )
5 4 anim1d
 |-  ( J e. Top -> ( ( ( x e. J /\ S C_ x ) /\ ps ) -> ( x e. ( ( nei ` J ) ` S ) /\ ps ) ) )
6 2 5 syl5bir
 |-  ( J e. Top -> ( ( x e. J /\ ( S C_ x /\ ps ) ) -> ( x e. ( ( nei ` J ) ` S ) /\ ps ) ) )
7 6 reximdv2
 |-  ( J e. Top -> ( E. x e. J ( S C_ x /\ ps ) -> E. x e. ( ( nei ` J ) ` S ) ps ) )
8 1 7 syl
 |-  ( ph -> ( E. x e. J ( S C_ x /\ ps ) -> E. x e. ( ( nei ` J ) ` S ) ps ) )