Metamath Proof Explorer


Theorem opnneir

Description: If something is true for an open neighborhood, it must be true for a neighborhood. (Contributed by Zhi Wang, 31-Aug-2024)

Ref Expression
Hypothesis opnneir.1 ( 𝜑𝐽 ∈ Top )
Assertion opnneir ( 𝜑 → ( ∃ 𝑥𝐽 ( 𝑆𝑥𝜓 ) → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝜓 ) )

Proof

Step Hyp Ref Expression
1 opnneir.1 ( 𝜑𝐽 ∈ Top )
2 anass ( ( ( 𝑥𝐽𝑆𝑥 ) ∧ 𝜓 ) ↔ ( 𝑥𝐽 ∧ ( 𝑆𝑥𝜓 ) ) )
3 opnneiss ( ( 𝐽 ∈ Top ∧ 𝑥𝐽𝑆𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) )
4 3 3expib ( 𝐽 ∈ Top → ( ( 𝑥𝐽𝑆𝑥 ) → 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) )
5 4 anim1d ( 𝐽 ∈ Top → ( ( ( 𝑥𝐽𝑆𝑥 ) ∧ 𝜓 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝜓 ) ) )
6 2 5 syl5bir ( 𝐽 ∈ Top → ( ( 𝑥𝐽 ∧ ( 𝑆𝑥𝜓 ) ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝜓 ) ) )
7 6 reximdv2 ( 𝐽 ∈ Top → ( ∃ 𝑥𝐽 ( 𝑆𝑥𝜓 ) → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝜓 ) )
8 1 7 syl ( 𝜑 → ( ∃ 𝑥𝐽 ( 𝑆𝑥𝜓 ) → ∃ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝜓 ) )